Lower third molar rotations: influence on surgery and a radiographic audit to assess incidence

By Stephanie Sammut

Plain and tomographic radiographs are often used to classify ectopic third molars usually focusing on the depth and angulation of the teeth in the para-sagittal plane. Assessment of rotations of the third molar in its long axis and degree of tilting in the coronal plane tend to receive less attention.

The use of 3-D CT imaging may be justifiable in some cases, but is often not significantly add to the information available from plain films. It is suggested that an appreciation of torsion rotations of third molars can influence the surgical technique to minimise surgical trauma and postoperative sequelae and that this information can be gleaned from routine preoperative films.

Clinical relevance statement
Concerning lower third molars with a rotation, care must be taken when determining line of section during surgical removal to minimise surgical trauma.

Objectives statement
The reader should understand the radiographic features which suggest rotation of the lower third molar in the long axis and the implications such rotations may have on the surgical management/removal.

Introduction
The most commonly performed procedure in oral and maxillofacial surgery is the surgical extraction of impacted wisdom teeth. It is customary to classify teeth according to radiographic and clinical findings to predict the difficulty of surgical removal.

During the pre-operative radiographic assessment of lower third molars, contemporary textbooks have generally placed only little significance on the rotation of the tooth around its long axis. Geoffrey Howe does consider the rotation of third molars in his book but generally it is the angulation of the tooth in the sagittal plane, i.e. whether it is distoangular, mesioangular, vertical or horizontal and its depth within the jaw which are given pre-eminence.

The OPG is the most frequently used image in the diagnosis and treatment planning of impacted mandibular third molars. Three-dimensional CT images are not routinely available or required, but can be particularly useful in demonstrating the nature of an intimate relationship between the tooth and the inferior dental canal. In considering the buccolingual inclinations, the use of a further plain radiograph has also been described, for example, the occlusal view. Two radiographic features were considered to give an indication of the rotation of a tooth around its long axis. These features were 1) the image of the outline of the cusps and 2) the image of the root anatomy. Both of these may be demonstrated in

NEW EVIDENCE FOR THE BENEFITS OF INCREASING BRUSHING TIME

To motivate behavioural change, it helps if patients understand the benefits of brushing for at least 2 minutes twice a day with fluoride toothpaste, compared to an average brushing time of around 46 seconds.

New research results from Aquafresh show that increasing brushing time:

To motivate behavioural change, it helps if patients understand the benefits of brushing for at least 2 minutes twice a day with fluoride toothpaste, compared to an average brushing time of around 46 seconds.

Significantly increases plaque removal

26% more plaque removal was observed with brushing for 120 seconds compared with 45 seconds.

Significantly increases fluoride uptake and enamel strengthening

Surface microhardness (SMH) increased in a linear fashion over the period 30–180 seconds.

References
panoramic as well as intra-oral plain radiography and when considered together can give a strong indication of the presence and degree of a tooth rotation.

Figure 1 demonstrates the differing radiographic images of an extracted lower third molar as it is rotated through 45 degrees and 90 degrees.

Cuspal image:
The superimposition of the cusps, into two well defined peaks, implies that there is no rotation along the long axis of the tooth (Fig. 1a) or that there is a 90-degree rotation (Fig. 1c). The latter is suspected by the differing convexity of the bucal and lingual surfaces of the crown. A cuspal image with three or more poorly defined cusps indicates a rotation of nearer 45 degrees (Fig. 1b).

Root image:
The image of two clearly defined roots with separate canals implies that there is no rotation (Fig. 1a). An octopus-like image caused by superposition of the root and pulp chambers (Fig. 2) indicates a degree of rotation along the long axis of the tooth of nearer 45 degrees (see also Fig. 1b). The root form image of a 90-degree rotated tooth (see Fig. 1c), may give the impression that the tooth will be easily elevated but this may not necessarily be the case.

Once any or both of these features are identified on a pre-operative radiograph, a modification to the surgical approach should be considered, with regard to which plane the tooth may optimally be sectioned if root division is indicated.

Incidence of third molar rotations
A consecutive prospective study of radiographs of patients awaiting surgical removal of lower third molars was carried out at the Edinburgh Dental Institute. One hundred orthopantomographs were assessed paying particular attention to the two radiographic features suggestive of rotation of the lower third molars around the long axis. Five per cent of these patients were seen to have radiographic features indicating a degree of torsion rotation of the tooth in the long axis.

Case I
The radiograph shown in Figure 5 is of a 57-year-old female who was referred for the extraction of her lower right wisdom tooth following recurrent episodes of pericoronitis. The cuspal image had three peaks and the root image was ill-defined and therefore a 45-degree rotation was suspected. This diagnosis only really has significance if a longitudinal section to divide roots is indicated.

At operation the tooth was found to be rotated and therefore prior to sectioning it would be necessary to assess the degree and direction (clockwise or anticlockwise) of rotation of the tooth around the long axis to establish the correct line of sectioning (see Fig. 4). If the tooth were not rotated, sectioning in a conventional buccolingual direction would separate the mesial and distal roots and facilitate extraction. Such root division would not occur if the same plane of section were used in a rotated tooth.

If difficulty is encountered whilst attempting to elevate a tooth with a ninety degree rotation (Fig. 5), it should be sectioned along the para-sagittal plane. This will be most effective as a blind root division procedure. Whether the 90-degree rotation is in a clockwise or anticlockwise is of no significance. If the sectioning of the tooth then alludes to the existence of two roots, the bucal most root can be removed first followed by the lingually positioned root. It is the lesser degree of rotation, for example, 45-degree rotation that requires more attention.

Conclusion
The incidence of rotations around the long axis of lower third molars requiring removal may be as high as five per cent. The diagnosis of such rotations can be predicted from observations of the preoperative radiograph and may influence the surgical technique. This can save time and minimise surgical trauma and post-operative sequelae.

Acknowledgements
The authors would like to thank Mr Victor Lopes for permission to publish information concerning his patients.

References

About the author
Stephanie Sammut BChD is senior house officer at the Department of Oral and Maxillofacial Surgery and Oral Medicine at the Edinburgh Dental Institute in Edinburgh. To get in touch, call 0131 536 0023.